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Alcohol Use Disorder (AUD) is a chronic health prob-
lem marked by an inability to cease or control alcohol 
use. This disorder significantly disrupts physiological 
functions, negatively impacting various body systems 
and posing significant detriment to both individual and 
societal health. Recent studies have shown that AUD 
has a significant impact on the Gut-Brain Axis (GBA), 
which involves a complex interplay of neuroimmuno-
endocrine and metabolic pathways.
There is strong evidence to suggest that alcohol-induced 
gut dysbiosis is closely linked to the development of 
various physiological and behavioral symptoms seen in 
individuals with AUD. Gut dysbiosis can influence brain 
functions, potentially modulating drinking motivation, 
reward mechanisms, and the development of alcohol de-
pendence. These observations underscore the potential 
of the gut microbiota as a therapeutic target for AUD.
New approaches like Fecal Microbiota Transplanta-
tion (FMT), where healthy gut bacteria are transferred 
from a healthy donor to a patient, as well as the use 
of probiotics and prebiotics, show promise as potential 
treatments for AUD. The role of postbiotics – byprod-
ucts of gut bacteria metabolism – in modulating the mi-
crobiota-GBA also holds substantial promise in AUD 
treatment, indicating that a more detailed understand-
ing of the microbiota-gut-brain axis could lead to novel 
and effective interventions for this complex disorder. 
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This review highlights the need for more research to 
better understand how the different components of the 
gut-brain axis interact and how they contribute to the 
development and progression of AUD.

INTRODUCTION

Alcohol Use Disorder (AUD) is a chronic, recurring 
condition characterized by the excessive and compul-
sive consumption of alcohol, leading to detrimental 
effects for individuals and society. According to the 
World Health Organization, AUD involves millions of 
people worldwide and has resulted in an alarming 3.3 
million deaths every year. This shows the seriousness 
of the epidemic and the urgent need to investigate its 
contributing factors1.
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For effective prevention and treatment of various organ 
systems, it is crucial to comprehend the complexity of 
AUD, which is a result of biological, social, and phys-
ical factors.
The Gut-Brain Axis (GBA) is a bidirectional network 
that incorporates the multifaceted interaction of neuro-
immunoendocrine and metabolic processes.
These pathway abnormalities could induce a variety of 
diseases, including AUD2-5. 
The gut microbiota is pivotal to the dynamics of the 
GBA. According to research, gut microbiota modulates 
brain function and behavior, particularly about AUD6, 
emphasizing the need to understand these interactions 
in order to provide tailored therapies.
The human microbiome, containing 10^13 to 10^14 
bacteria, is significantly more diverse than human 
genes, with Bacteroidetes and Firmicutes forming the 
core gut microbiota. 
Alcohol interferes with gut bacteria and alters residents’ 
communities. This condition, called dysbiosis, can be 
caused by changes in gut bacterial population distribu-
tion, metabolic activity, or bacterial species abundance. 
Alcohol-induced dysbiosis can have wide-ranging ef-
fects on both physical and mental health. This results in 
changes to metabolism, immune system function, and 
the integrity of the intestinal barrier and has an impact 
on brain activities, including GBA functions6.
Current scientific research focuses on the relationships 
between alcohol addiction, gut dysbiosis, increased in-
testinal permeability, and brain reward pathways7.
Gut microbiota plays a role in the production of essential 
metabolites, neurotransmitters, and appetite-modulating 
peptides, which are linked to alcohol misuse and alco-
hol-related diseases like alcoholic liver disease (ALD)8.
Alcohol consumption leads to gut barrier deteriora-
tion, disrupting gut microbiota and allowing bacterial 
translocation9,10. This triggers a stronger inflammatory 
response in the brain, increasing alcohol dependency8 
and affecting gut microbiota11-12.
Gut microbiome changes can increase alcohol depen-
dence risk, potentially affecting motivation and crav-
ing, and potentially affecting brain reward pathways 
and AUD progression13.
The evidence underscores the necessity of compre-
hensive research on microbial communities, host-mi-
crobiota interactions, and the potential effects of AUD. 
These findings could improve therapeutic interventions 
and prevent alcohol-induced dysbiosis. Emerging ther-
apeutic strategies for treating AUD include Fecal Mi-
crobiota Transplantation (FMT), probiotics, and prebi-
otics. When combined with conventional treatments, 
these approaches have shown promising results14. 
Moreover, postbiotics may be useful in the manage-

ment AUD. These small molecules, participating in 
microbiota homeostasis, hold the capacity to modulate 
gut microbiota and metabolite production, manipulate 
appetite-regulatory peptides, and restore emotional sta-
bility in AUD15,16.
This narrative review will explore the complex rela-
tionship between gut microbiota and AUD, highlight-
ing the contribution of the GBA and possible treatment 
implications.

THE GUT-BRAIN AXIS

AUD is caused by various physiological changes that 
are influenced by multiple factors, with the GBA play-
ing a significant role in this process10. In recent studies 
that examined the effects of chronic alcohol consump-
tion on the gut microbiota, it was found that alcohol 
consumption led to gut dysbiosis. The impairment of 
GBA caused by dysbiosis has a major effect on AUD, 
emphasizing the role of gut microbiota in its pathogen-
esis, development, and manifestation17,18. Particularly, 
the composition of the gut microbiota varies remark-
ably under the influence of chronic alcohol consump-
tion19. Alcohol directly affects the microbiota composi-
tion. In addition, it affects both the diet and the activity 
of the autonomous nervous system that regulates gut 
motility. These processes can affect the diversity, rich-
ness, and composition of the microbiome by promoting 
the growth of potentially harmful bacteria20. The GBA 
provides bidirectional homeostatic communication be-
tween the brain and the gastrointestinal tract. The inter-
play occurs through four distinct routes: neural path-
ways, particularly the vagus nerve; immune pathways; 
neuroendocrine pathways also involving the hypotha-
lamic-pituitary-adrenal axis, and metabolic pathways. 
Inflammatory pathways also play a role, being trig-
gered by molecules like interleukin (IL)-1β and tumor 
necrosis factor-α (TNF-α)10.

The Small Molecules in GBA and AUD
The gut microbiota has multiple functions, including 
the production of metabolites like short-chain fatty ac-
ids (SCFAs)21. Metabolites play a crucial role in facil-
itating communication between the gut and the brain, 
exerting both direct and indirect effects22. SCFAs, in-
cluding butyrate, propionate, and acetate, are produced 
during the fermentation process when the gut bacteria 
break down dietary fibers23. These fatty acids can pass 
through the blood-brain barrier, acting as a communi-
cation pathway between the gut and the brain24,25.
In addition, SCFAs have been found to influence circu-
lating immune cells and infiltrating immune cell pop-
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ulations in the brain24. The influence of SCFAs on the 
brain impacts neurological activity and mood26.
SCFAs have the ability to interact with specific recep-
tors on the cells lining the gut. This interaction can 
induce a wide array of effects that have the potential 
to modify the movement of the gut and the release of 
hormones within the gut. Both processes can affect gut-
brain interactions, which may affect alcohol use24.
Releasing gut hormones that affect the vagus nerve is 
a peripheral action. These nerves are the main way the 
gut communicates with the brain about organ health. 
SCFAs influence vagus nerve signaling, changing brain 
input and visceral processing. The behavior of sub-
stance use disorders may also be affected27.
In addition, gut microbiota and its metabolites, espe-
cially SCFAs, affect immune system development and 
function. They regulate immune cells and produce an-
ti-inflammatory chemicals. They can also affect gut and 
distant organ immune responses via circulation, linking 
brain function to immunological responses28.
Indeed, SCFAs are critical to microglial function, 
the basic immune cells of the central nervous system 
(CNS). Microglia maintain homeostasis and respond 
to pathology, ensuring brain health29. SCFAs influence 
microglial maturation and function, affecting immu-
nological responses and the pathophysiology of many 
neurological illnesses, including addiction disorders11.

Peptides, Neurotransmitters, and Hormones in GBA 
and AUD
The intricate association between neurotransmit-
ters and hormones produced by gut bacteria offers a 
novel perspective on the pathology of AUD. These 
neurotransmitters and hormones are documented to 
influence the body’s reactions and attitudes towards al-
cohol30. As such, their roles in AUD pathology extend 
beyond effecting systemic responses and interactions 
with the enteric nervous system but also involve poten-
tial impacts on neuroendocrine pathways31.
Gut bacteria release γ-Aminobutyric acid (GABA), a 
CNS inhibitor. Research indicates that ethanol expo-
sure increases GABA release, affecting GABA recep-
tor plasticity, alcohol reliance, and withdrawal symp-
toms32. While GABA cannot breach the blood-brain 
barrier due to its polarity, changes in gut GABA levels 
can provoke physiological reactions, primarily through 
the host's immunological response and mediated neu-
rogenic signals, thereby influencing AUD-related brain 
functions and behaviors33.
Also, gut bacteria significantly influence dopamine syn-
thesis, a neurotransmitter implicated in motivation and 
reward34. Disruptions in gut dopamine could indirectly 
affect brain functionality, with systemic impacts includ-

ing changes in immune responses potentially indirectly 
affecting the brain through gut-derived dopamine35,36.
Gut bacteria generate and modulate serotonin levels, 
a neurotransmitter controlling intestinal movements. 
Gut-produced serotonin may trigger gut lumen receptors 
that relay brain neuronal impulses37. It may also regulate 
platelet, osteogenic, and cardiovascular functions38,39.
The gut microbiota synthesizes peptide hormones that 
directly affect brain function and behavior40. For AUD, 
peptide hormones as cholecystokinin (CCK), leptin, 
ghrelin, and peptide YY (PYY) may affect alcohol-re-
lated physiological responses41,42. Leptin, which reg-
ulates energy metabolism and appetite, is also altered 
by chronic ethanol consumption43. Ghrelin-commonly 
referred to as the 'hunger hormone'-has been positive-
ly correlated with alcohol consumption. Studies have 
observed elevated levels of ghrelin in plasma of indi-
viduals diagnosed with AUD who have abstained from 
alcohol, indicating a potential link between plasma 
ghrelin levels and the duration of alcohol abstinence44.
The hypothalamic-pituitary-adrenal (HPA) axis is a key 
neuroendocrine system in AUD45. Chronic alcohol use 
disrupts the HPA axis, affecting stress response46,47. An 
inverse relation has been shown between the ability to 
manage stress and craving and relapse AUD patients48,49.

Entero-Biliary Circulation in GBA and AUD
Biliary acids (BAs), produced from cholesterol in he-
patocytes, control gut microbiota composition and met-
abolic as well as immunological processes50. Moreover, 
BAs affect brain physiology, behavior, and cognition50-52. 
Alcohol-related liver impairment affects BAs produc-
tion, secretion, and transport53.
Alcohol-induced liver impairment can alter BAs com-
position and metabolism, affecting enterohepatic circu-
lation, gut flora, and systemic inflammation, leading to 
intestinal barrier failure and systemic inflammation54,55.
BAs play a crucial role in the gut-brain axis in AUD, influ-
encing reward and satiety processes56. Modulation of gut 
hormones, particularly glucagon-like peptide-1 (GLP-1), 
may have profound effects on reward pathways, influenc-
ing alcohol seeking and consumption behaviors57. 
BAs also affect neurotransmitter production, linking pe-
ripheral biliary function to central nervous regulation. 
Dysregulated BAs profiles can suggest hepatic dysfunc-
tion and have direct neuropsychiatric implications58.
Therapeutic modulation of these pathways is necessary 
to improve AUD treatment and reduce biliary disor-
ders59. BAs sequestrants and FXR agonists can restore 
gut-brain balance and reduce some symptoms of AUD60. 
This therapeutic method may modulate gut microbiota 
and provide neuroprotection61. The gut microbiota and 
brain communicate via entero-hepatic metabolites like 
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SCFAs, secondary bile acids, amino acid-derived me-
tabolites, and subcellular bacterial components62. Food 
intake and energy balance are affected62.

The Vagus Nerve in GBA and AUD
The vagus nerve innervates the gut, controlling many 
gastrointestinal functions from the esophagus to the 
transverse colon63. Its function extends beyond activi-
ties related to basic digestion and motility, establishing 
a linchpin role linking peripheral organs to the CNS64. 
This connection facilitates the transfer of information 
on visceral organ conditions to the brain, emphasizing 
the importance of an intact vagus nerve in the GBA 
communications65.
Moreover, the brain-gut connection creates an essential 
pathway for various signal transmissions66. Evidence 
suggests that these pathways allow the gut microbiota 
to influence an individual’s vulnerability to alcohol-re-
lated behaviors and AUD67, substantiating the growing 
research emphasizing gut microbiota alterations in re-
lation to AUD68.
These changes in the microbiome profile and metabo-
lite production may affect vagus nerve signal transmis-
sion69. Thus, the vagal afferent communication pathway 
between the gut and brain may notably impact neuro-
transmission and inflammatory responses, potentially 
providing various strategies to mitigate neuroinflam-
matory conditions and adjust alcohol-seeking behavior 
through its influence on the brain's reward systems70.
A recent study has highlighted a neural circuit connect-
ing the gut and brain, specifically emphasizing the role 
of vagal neurons in the reward pathway71. This inves-
tigation suggests that alcohol-induced disturbances in 
the gut microbiota may impact striatal dopamine levels, 
contributing to neuroinflammation and impairments in 
reward responding72.
Previous studies on rodents have suggested that mi-
crobiome-depleted animals exhibit heightened reward 
sensitivity and withdrawal response alterations, con-
firming the crucial influence of gut microbiota on re-
ward-seeking behaviors73.
The vagus nerve's influence extends to the brain's re-
ward system, encompassing the nucleus accumbens, 
the limbic system, and other areas involved in reward 
processing, motivation, and emotional regulation, 
which are essential in addiction74. These areas are tar-
geted by multi-synaptic pathways, with the vagal af-
ferents transmitting gut signals to the nucleus tractus 
solitarius (NTS) in the brainstem, which then projects 
the signals to these brain locations75.
Lastly, it is worthy to note that while gut-produced me-
tabolites and immune signaling molecules can impact 

vagal nerve signaling, the vagus nerve itself also has the 
capacity to modulate the gut. For instance, stress can 
trigger increased vagus nerve activity, leading to chang-
es in intestinal cell motility and secretion76. This could, 
in turn, affect the composition and function of the gut 
microbiota and, hence, its effects on the entire body77.

The Neuroinflammation in GBA and AUD
Neuroinflammation is a key feature in the intricate 
landscape of AUD78. It is a protective mechanism that 
the body initiates to guard neural cells against diseas-
es and damaging agents. However, when not properly 
modulated, as seen in AUD cases, it becomes harmful 
and can lead to neurological diseases79.
The gut microbiota has a fundamental role in regulat-
ing the immune system; hence, any disruption, nota-
bly from AUD, could trigger a host of immunological 
responses, culminating in neuroinflammation78. When 
AUD prompts alcoholic dysbiosis, gut permeability 
changes ensue, allowing bacterial toxins like lipopoly-
saccharides to enter the bloodstream. This escalates im-
mune responses markedly, triggering the production of 
pro-inflammatory cytokines that affect not only periph-
eral regions but also the CNS79,80. The chronic inflam-
mation of neurons is known to contribute significantly 
to the detrimental effects of AUD, including cognitive 
impairments and mood disorders70.
Moreover, AUD patients with neuroinflammation have 
altered alcohol responses78. However, many unanswered 
questions linger, necessitating ongoing research into 
how neuroinflammation influences drug-seeking be-
haviors, or hinders the cessation of alcohol use79. Initial 
findings suggest that neuroinflammation could impact 
the dopaminergic reward system, often linked to the mo-
tivation for alcohol consumption79.
The relationships between microbiota alterations, 
neuroinflammation, and alcohol abuse are complex. 
The challenge lies in discerning whether microbiome 
changes prompting neuroinflammation are a conse-
quence of AUD or if there's inherent microbiome vari-
ance contributing to AUD developments79. The present 
research notes that both scenarios could exist70. There 
is an observed interplay between alcohol-induced gut 
dysbiosis and intensified alcohol craving and con-
sumption, creating a harmful cycle80. Alternatively, gut 
microbiota variations could stem from genetic, environ-
mental, or nutritional factors, potentially making certain 
individuals more susceptible to AUD development or 
harsher disease progression79.
In conclusion, the interplay of gut-brain neuroinflam-
mation in AUD ties into the disorder's development, 
manifestation, and treatment78. 
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Gene Expression in GBA and AUD
Enduring changes in activity-dependent transcription 
and epigenetic modifications to chromatin structure as-
sociated with substance use disorders have been illus-
trated in research81.
One prime example is evident in germ-free mice. These 
mice exhibit altered gene expression in integral areas of 
the brain, such as the prefrontal cortex and amygdala82. 
Both germ-free mice and those subjected to antibiotics 
to rid their gut microbiome show changes in chroma-
tin structure and gene expression in CNS microglia83. 
Moreover, these mice with a depleted microbiome il-
lustrate abnormal regulation of dopamine receptors and 
neurotrophic factors when exposed to alcohol84.
Interestingly, the microbiome's influence on brain tran-
scriptomics and epigenetics is of comparable magni-
tude in both germ-free mice and those that receive anti-
biotic treatments later in life. This suggests a significant 
dynamic role of the microbiome in gene regulation that 
carries on throughout the organism’s lifetime85.
It appears that neuroactive molecules originating from 
bacteria are instrumental in triggering changes in gene 
expression and epigenetics influenced by the micro-
biome. Short-chain fatty acids (SCFAs), products of 
bacterial fermentation, have extensive regulatory im-
pacts and can inhibit histone deacetylase. Butyrate and 
acetate are especially efficient among these SCFAs26. 
Specifically, gut-derived acetate has been found to con-
siderably affect the brain, modifying histone acetyla-
tion patterns, and thereby inducing changes in memory 
consolidation and individual's response to alcohol86.

PHYSIOLOGICAL IMPLICATIONS OF AUD 
ON GBA

The Influence of AUD on Neurological Functions: 
The Involvement of GBA
AUD extensively impacts brain function. Research re-
veals that AUD inherently modifies various brain areas, 
including the hippocampus-amygdala-frontal limb cir-
cuit, consequently affecting emotional processing and 
cognitive function87-89.
Persistent alcohol consumption modifies the gut’s mi-
crobial flora, which in turn influences the brain’s re-
sponse to AUD. Tests on mice indicated that those with 
reduced gut microbiota displayed abnormal cognitive 
and affective processing90-92, highlighting the correla-
tion between gut microbiota and brain health.
AUD affects the hippocampus, a brain area involved 
in the brain-gut axis, influencing glycerophospho-
lipid metabolism and, as a result, neurogenesis and 
neuroplasticity93. Studies also indicate that alterations 

to the gut microbiota can trigger an inflammatory re-
sponse, leading to a significant decrease in hippocampal 
Brain-Derived Neurotrophic Factor (BDNF) and mono-
amine neuromodulation, resulting in mood shift and im-
paired cognition33.
Moreover, AUD severely impacts the brain's structure 
and function, especially in the hippocampus and medi-
al prefrontal cortex. Beck et al. found enduring effects 
of long-term alcohol consumption on memory and 
learning capabilities94.
The hippocampus, crucial for emotional regulation, re-
lies on microbiome input for development95. Early gut 
microbiota disruption leads to reduced BDNF and al-
tered monoamine neuromodulation function96.
AUD can lead to dysregulation of the amygdala, a 
brain region essential for regulating negative emotions. 
Studies found a correlation between heightened amyg-
dala activation and the presence of mood disorders and 
cognitive dysfunction97,98.
Significant alterations in behavior and cognition can 
also arise from gut microbial interference with the fron-
to-limbic system, specifically the amygdala and hippo-
campus99,100. Behavioral disturbances imply increased 
risk-taking behavior as a result of microbiome changes.
Furthermore, it is important to note that AUD has a 
detrimental effect on the prefrontal cortex, which is 
important for emotional regulation. This serves as a 
risk factor for the development of various mental dis-
orders101. This alteration contributes to the modification 
of the gut-brain axis through a top-down mechanism102. 
It suggests therapeutic targeting of the gut microbiota 
could potentially remediate mental disorders.
The gut microbiota also plays a role in prefrontal cortex 
(PFC) development, essential for inhibitory control, 
cognitive flexibility, and emotion regulation103. Disrup-
tions in PFC-related behaviors were observed with gut 
microbiota disruptions104,105.
The physiological effects of AUD are further compli-
cated by its detrimental impact on the Blood-Brain 
Barrier (BBB). Excessive alcohol consumption can 
negatively impact the BBB's structure and function106. 
This occurs due to an increase in oxidative stress. Tox-
ic byproducts can pass through the BBB, causing neu-
ral depletion and dysfunction in glial cells, ultimately 
resulting in brain damage107. BBB damage can enable 
bacterial metabolites, such as LPS, to reach the CNS, 
leading to an increased pro-inflammatory response108. 

The Influence of AUD on Gut Microbiota Composition
Alcohol and its metabolites have a significant influence 
on the gut microbiota109. Alcohol has direct effects on 
bacterial proliferation and indirect effects on the intes-
tinal milieu, causing acidity and inflammation that af-
fect gut microbiota109.
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Among phylum-level changes, studies have shown that 
alcohol consumption promotes a rise in the relative 
abundance of Proteobacteria and Verrucomicrobia, 
contrasted with a decrease in Actinobacteria, Firmic-
utes, and Bacteroidetes110,111. Concurrently, alcohol 
leads to an increase in the abundance of classes like 
Gammaproteobacteria, Bacilli, and Fusobacteria, 
while decreasing the relative abundance of Bacteroide-
tes, Clostridia, and Actinobacteria111,112.
Family-level alterations as a result of alcohol expo-
sure include an increased abundance of Enterobac-
tericaea, Desulfovibrionaceae, Erysipelotrichaceae, 
Ruminococcaceae, and Lachnospiraceae. A decrease 
is observed for Porphyromonadaceae, Veillonellaceae, 
Bacteroidaceae, Paraprevotellaceae, Lachnospirace-
ae, and Clostridiaceae111,113.
In regard to genera, entities such as Klebsiella and Lac-
tococcus see a noticeable increase because of alcohol 
exposure. On the other hand, Clostridium, Akkerman-
sia, Clostridiales, and Coprococcus display reduced 
levels upon alcohol consumption114.
The gut hosts a combination of both beneficial and harm-
ful bacteria115-120. Beneficial bacteria such as Lactobacil-
lus, Bifidobacterium, Muribaculum intestinale, Rumino-
coccus, Faecalibacterium prausnitzii, and Akkermansia 
play essential roles in maintaining gut function, immune 
regulation, and managing inflammatory responses, while 
counteracting alcohol-induced perturbations115-120.
Conversely, harmful bacteria like Enterobacteriaceae, 
Klebsiella, Lactococcus, and the Clostridium cluster 
XIVa create inflammation, liver damage, and chronic 
neuroinflammation while spurring the onset and spread 
of diseases121-124.
Studies using 16S rRNA sequencing reveal that alco-
hol alters the composition of the gut microbiota125. Key 
findings include a re- duction of beneficial bacteria like 
Lactobacillus (or Sporolactobacillus) and a parallel 
increase of entities such as Allobaculum following al-
cohol exposure.. These changes occur without altering 
the overall number of gut microbiota species, as con-
firmed through Shannon analysis125.
The pattern and dosage of alcohol consumption induce 
distinct modifications in gut microbiota composition. 
Acute, or episodic, drinking commonly induces revers-
ible, temporary changes20. In contrast, sustained expo-
sure to alcohol prompts more intense and long-lasting 
transformations, usually calling for complex and com-
prehensive intervention strategies for reversal20,126.
The variability in drinking dosages leads to disparate 
timelines for the restoration of normal gut microbiota. 
Specifically, changes induced by lower alcohol doses can 
be modified using suitable interventions127. However, 
the reestablishment of extreme alcohol dose-induced gut 

dysbiosis requires a substantially extended duration3.
Patients with AUD manifest a decrease in Akkerman-
sia and an escalation in Bacteroides, possibly repre-
senting a distinct gut microbial fingerprint128.

Microbiota: Implications for Alcohol Dependence 
and Cravings
Preclinical studies suggest the role of the gut microbi-
ota in the pathophysiology of alcohol addiction. Mice 
exposed to ethanol over four weeks exhibited signif-
icant changes in bacterial taxa, especially substantial 
reductions in the genus Clostridium129. Furthermore, 
correlations have been reported between this specific 
genus of bacteria and several addiction-related behav-
iors, predominantly increased impulsivity, inattention 
deficits, and reward learning130.
Preliminary human investigations have greatly empha-
sized the relationship between AUD-induced gut dys-
biosis and alcohol withdrawal and craving responses. 
Bajaj et al131 propose that the gut microbiota composi-
tion remained affected despite the restoration of intes-
tinal permeability following a three-week detoxifica-
tion period. These alterations and their physiological 
effects may significantly contribute to the negative re-
inforcement process linked to alcohol consumption132.
Experiments involving the FMT from alcohol-con-
suming mice to healthy mice resulted in the recipient 
mice displaying symptoms of withdrawal-anxiety131. 
According to a phase 1 clinical trial, individuals who 
underwent FMT therapy experienced short-term en-
hancements in their impulse control and reduced crav-
ings. These improvements were found to have a nega-
tive association with the Ruminococcaceae genera131. 

THE GUT-BRAIN AXIS: A POSSIBLE 
THERAPEUTIC TARGET 

Gut microbiota could be an important target for GBA 
therapy due to its ease of manipulation81.
Probiotics, living microorganisms conferring health 
benefit, have been extensively studied for their thera-
peutic effects and potential to regulate gut microbiota 
imbalances caused by AUD133. They influence neu-
rotransmitter systems, immune responses, and gut 
barrier function134. Lactobacillus and Bifidobacterium 
strains produce neurotransmitters such as GABA135. 
Clinical research and systematic reviews support 
probiotic treatment for AUD. Bravo et al. found that 
a specific Lactobacillus strain affected brain GABA 
receptor expression and reduced stress and anxiety in 
mice136. A comprehensive review by Tsai et al. found 
that pro- biotics improved cognitive function, mood, 
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and alcohol appetite in AUD patients137. Probiotics also 
reduce pro-inflammatory molecules and prevent reward 
and craving brain regions from activating by restoring 
gut microbial balance and gut barrier function138.
Savignac et al.139 found that specific Bifidobacterium 
isolates significantly mitigated depressive and anxious 
behaviors in mice. Further, other research140 revealed 
that Bifidobacterium longum attenuated responses to 
negative emotional stimuli in various brain regions by 
over 60% and reduced depression scores. On the other 
hand, Lactobacillus demonstrated antidepressant pat-
terns141. The emerging understanding of psychobiotics 
show potential in aiding individuals with AUD. Howev-
er, further clinical and preclinical studies are required33.
Prebiotics, non-digestible dietary compounds, have 
been shown to selectively stimulate the growth and ac-
tivity of beneficial bacteria in the gut, contributing to a 
healthier gut microbiota and overall gut health142. Stud-
ies have demonstrated the promising effects of prebiot-
ics in mitigating symptoms and improving outcomes in 
individuals with AUD142-144. For instance, Ames et al.145 
found that increased consumption of dietary fiber was 
associated with beneficial changes in the gut microbio-
ta in individuals with AUD, indicating a potential ther-
apeutic effect. According to Carlson et al.146, prebiotics 
bolster the gut microbiota on a larger scale, indicating 
potential therapeutic effects on mood disorders com-
monly associated with AUD143.
Fecal microbiota transplant (FMT) has garnered atten-
tion as a novel intervention aimed at restoring a healthy 
gut microbiota composition and function147. Research 
has shown promising results regarding the effects of 
FMT on gut microbiota composition and alcohol-re-
lated behaviors. Studies have indicated that FMT from 
non-drinking donors can attenuate ethanol-induced liv-
er damage, reduce alcohol preference, and modulate the 
brain's reward circuitry, thereby impacting alcohol-re-
lated behaviors147. Furthermore, FMT has been pro-
posed as a therapeutic approach to restore gut homeo-
stasis and reduce systemic inflammation in individuals 
with AUD148. Animal studies have indicated that FMT 
from non-drinking donors attenuated ethanol-induced 
liver damage and reduced alcohol preference, showcas-
ing the potential role of FMT in modifying alcohol-re-
lated behaviors149. These findings suggest that FMT 
may modulate the brain's reward circuitry and improve 
abstinence rates in AUD patients.
Antibiotics can significantly alter microbial popula-
tions, potentially affecting the therapeutic response of 
AUD patients150 and potentially causing collateral dam-
age to gut microbiota diversity151.
Modifications in diet can also rapidly shift gut micro-
bial compositions152. As such, diet may serve as a sig-

nificant non-pharmacological tool for improving gut 
health, helping to alleviate AUD symptoms.
Increasing attention has been paid to postbiotics and 
small molecules for their potential in managing AUD150. 
Yet, our understanding of these elements remains in its 
early stage.
Substantial opportunities exist to use the gut-brain axis 
as a therapeutic target in AUD, given the potential of 
non-pharmacological interventions like probiotics, 
prebiotics, and FMT. These interventions, supported 
by diet amendments, require comprehensive analysis 
and rigorous testing. The field is prepared for future 
research development, offering the potential for inno-
vative techniques to address AUD holistically.

CONCLUSIONS

The relationship between the gut microbiota and the 
GBA is an emerging area of research in the study and 
treatment of AUD. Recent findings have shed light on 
the complex connections between alcohol and gut dys-
biosis, highlighting how this condition could persist 
even after alcohol withdrawal. These insights suggest 
that it plays a significant role in the negative reinforce-
ment patterns linked to alcohol consumption. Studies 
on FMT show gut bacteria's significant impact on the 
behavioral symptoms of AUD, suggesting it could be a 
promising new therapeutic approach.
Further investigation is required to fully understand the 
implications of the microbiota-gut-brain axis interac-
tion for AUD, due to its inherent complexity. Exploring 
these intricate pathways offers a novel opportunity, po-
tentially as a supplement or alternative to conventional 
AUD treatments. This research enhances our under-
standing of AUD and has the potential to improve its 
treatment and care.
Managing the gut microbiota through therapeutic in-
terventions may treat AUD, according to growing re-
search. Understanding gut microbiota complexities 
remains challenging, but rigorous scientific research 
is crucial for managing AUD and improving overall 
health outcomes.
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