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Alcohol, the most consumed drug in the world, is re-
sponsible for millions of deaths and a significant of 
disability-adjusted life years. Alcohol-related liver dis-
ease is the most recognized disease related to heavy 
ethanol consumption, the pathophysiology of wich we 
will cover extensively. However, pancreatitis, dilated 
cardiomyopathy, alcohol-related neurological diseases 
and other topics will be reviewed with detailed patho-
physiological mechanisms and unifying concepts. Ab-
stinence is the most effective treatment for alcohol-re-
lated disease, and an international effort should be made 
to promote a marked reduction in alcohol consumption.

ABSTRACT INTRODUCTION 

With circa 2.3 billion drinkers worldwide, alcohol is 
the most consumed drug in the world1. Its harmful use 
has been responsible for 3.3 million deaths yearly2 and 
up to 8.9% and 6.8% of disability-adjusted life years 
in men and women, respectively1,2. Effective measures 
such as taxation and advertisement control have re-
duced alcohol-related mortality3.
Beyond liver cirrhosis, the most well-established rela-
tionship with heavy alcohol consumption, many other 
organs are affected and may occur independently or 
associated with alcohol-related liver disease (ALD) 
(Table 1). This review will describe the pathophysio-
logical, clinical and epidemiological aspects of alco-
hol-induced organ damage (Figure 1). 

Table 1. Summary of drinking patterns and alcohol-related disease.

Definitions of drinking 
consumption

Liver

Central nervous system

Cardiovascular

Pancreas

Metabolic

Infectious

Hematological

Other

Light: ≤3 drinks/week
Moderate: Women: 4-7 drinks/week; Men: 4-14 drinks/week
Heavy: Women: ≥8 drinks/week; Man: ≥15 drinks/week
Binge: Women: ≥4 drinks on occasion; Men: ≥5 drinks on occasion 

Steatotic liver disease, fibrosis, cirrhosis, acute steatohepatitis, hepatocellular carcinoma

Cerebellar degeneration, Wernicke encephalopathy, Korsakoff syndrome, Dementia, Seizures, Peripheral neuropathy, 
Marchiava-Bignami disease, cerebral atrophy with cognitive decline

Dilated cardiomyopathy, arrhythmias, hypertension, stroke, peripheral artery disease, coronary artery disease.

Acute and chronic pancreatitis, Diabetes mellitus type 3b, carcinoma.

Malnutrition, obesity, osteoporosis, sarcopenia, gout.

Pneumonia, more prone to complications (and acute respiratory distress syndrome), the majority of which caused 
by S. pneumoniae.

Iron-deficient, hemolytic and sideroblastic anemia, Sieve’s syndrome, Leukopenia, Thrombocytopenia, Myelodysplastic 
Syndromes, Lymphoma, Myeloma.

ARDS risk, IgA Nephropathy, falls and motor vehicle accidents with potential life-threatening fractures and cerebral 
contusions. Gastritis, esophagitis, and an increased risk of gastrointestinal bleeding, esophago-gastric cancer
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Figure 1. Alcohol-related multi-organ disease with respective impact of the quantity of alcohol consumption.

LIVER DISEASE 

Introduction
ALD encompasses a spectrum of states related to al-
cohol-induced liver damage in patients with alcohol 
use disorder (AUD), ranging from simple steatosis to 
steatohepatitis, alcohol-related hepatitis (AH) and cir-
rhosis, culminating in hepatocellular carcinoma (HCC) 
(Figure 2).

Epidemiology
Although different patterns of alcohol consumption in-
fluence the rate of incidence and prevalence of ALD1,4, 
their relationship is clear: incidence5, hospital admis-
sions and mortality due to ALD increase with higher 
levels of alcohol consumption6, regarding steatohepati-
tis, cirrhosis, HCC and acute alcohol-related hepatitis, 
available epidemiological data varies between disease 
types and geographical location. While in the USA, 
mortality due to alcohol-related cirrhosis is 5.7/100 000 
inhabitants (inhab), in Europe, it varies from 3-5.5/100 
000 inhab7,8.
In Latin America, alcohol is also the leading cause of 
liver cirrhosis, however, with varying rates of mortal-

ity, ranging from 3.9/100 000 inhab in Colombia to 
20.1/100 000 inhab in Peru8,9.
In these last three regions, ALD accounts for 60% of 
cirrhosis related cases5 and globally for circa 50% of 
cirrhosis related deaths6.
The Asia-Pacific region is heterogeneous due to the 
economic development in recent decades in some 
countries, while in others, religious practices remain a 
strong influence on alcohol consumption. For instance, 
in China and India, the yearly alcohol consumption per 
capita (ACPC) is circa 7-10 times higher (ACPC China 
7.2 L, APCP India 5.6 L) than in countries such as In-
donesia (0.8 L) or Bangladesh (0.0 L).10

Data for alcohol-related hepatitis is not as vast, but 
alarming, with high mortality in its severe forms6,10, 
accounting for 0.8% of admissions in the USA1. Its in-
cidence is probably increasing, with the contribution of 
the recent global pandemic, especially among young 
women11,12.

Genetic and epigenetic factors
There is a multitude of data highlighting the role of 
genetic variability in developing ALD. In fact, only 
10-20% of adults with AUD will develop ALD3. 
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Figure 2. The natural history of alcohol-related liver disease.

Monozygotic twins show a greater concordance for 
ALD-cirrhosis than dizygotic twins3,13.
The genes that are thought to play a major role in ALD 
progression are involved in the pathways of ethanol 
and lipid metabolism, and mediation of the inflamma-
tory response. Patatin-like phospholipase domain-con-
taining protein 3 (PNPLA3) (rs738409 in PNPLA3) is 
an enzyme responsible for lipid metabolism in hepato-
cytes, and Genome Wide Association Studies (GWAS) 
have implicated it in developing cirrhosis, HCC and 
metabolic dysfunction-associated steatotic liver dis-
ease (MASLD) in multiple populations13-14. The popu-
lation-attributable risk for progression to cirrhosis with 
the risk allele in PNPLA3 was 26.6%14,15. This implies 
that although genetic risk plays an important role, in 
most cases, environmental and host-mediated risk fac-
tors modifiers are involved. 
In the last decade, GWAS studies in European cohorts 
of ALD cirrhosis have detected other variants, such as 
in membrane bound O-acyltransferase domain-con-
taining 7 (MBOAT7) and in TM6SF214. Variants in 
TM6SF213,16 impair very-low-density lipoprotein me-
tabolism17 and contribute to hepatic lipid trapping16, 

whereas MBOAT713,18 is associated with the transfer 
of fatty acid between phospholipids and lysophospho-
lipids, driving inflammation16. Various pathological 
variants in alcohol dehydrogenase (ADH) have also 
been identified in GWAS13. Inflammatory and fibrosis 
cytokines and chemokines, such as TNF-α16 , the IL-20 
family19,20, the inflammasome21 and CYP2E118,22,23 are 
associated with cirrhosis, AH and HCC development/
progression. The involvement of CYP2E1 in alcohol 
metabolism and the development of ALD and alco-
hol-related HCC is discussed in detail in another chap-
ter of this edition. More recently, a risk score based on 
three genetic risk variants and diabetes status stratified 
heavy drinkers based on their risk of cirrhosis, allowing 
for earlier preventative interventions24. 

Pathophysiology of alcohol-related liver disease
Ethanol exerts an influence on lipid metabolism, the re-
dox system, organelle function, apoptosis/necroptosis, 
inflammation, fibrogenesis and epigenetics18,21,22,25,26. 
These processes interact synergistically and lead to ste-
atohepatitis, cirrhosis and hepatocarcinoma18,25.
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Ethanol metabolism, steatosis, and inflammation
Ethanol is metabolized through two major path-
ways: ADH/Aldehyde Dehydrogenase (ALDH) and 
CYP2E122,25,26. Ethanol is metabolized by ADH/gen-
erating acetaldehyde, which is further converted into 
acetate by ALDH, generating NADPH in the process27. 
Acetate, after binding to coenzyme A generates acetyl 
Co-A, can be used to generate energy in the Krebs cy-
cle or for fatty acids synthesis27.
NADPH shifts hepatocyte metabolism to fatty acid 
synthesis by inhibiting the Krebs cycle, leading to 
intrahepatic fat accumulation25. Fatty acids are either 
oxidized for energy use or esterified into triglyceride 
vesicles and released as VLDL27,28,29 under normal cir-
cumstances, but this process changes with excessive 
alcohol consumption27.
Fatty acid oxidation is markedly affected by exces-
sive alcohol use: ethanol depolarizes mitochondria 
membranes, leading to defective beta-oxidation27. Ex-
cessive Malonyl-CoA, produced with increased etha-
nol consumption, also inhibits fatty acid transport to 
mitochondria27. Promoters of beta oxidation, such as 
PPARα, that increase gene expression related to the 
transport and oxidation of fatty acids are also inhibited 
directly by ethanol or adducts that result from its me-
tabolism27. Fatty acid production increases with higher 
alcohol intake, and de novo lipogenesis is also ampli-
fied through enzyme induction by the SRKP2 gene, di-
rectly upregulated by ethanol27.
The ADH/ALDH pathway leads to fatty acid accumu-
lation, as depicted by steatosis, and produces other ex-
cess byproducts, such as aldehyde, acetaldehyde, lipid 
hydroperoxides, reactive aldehydes26 malonyl-CoA, 
acetyl-CoA27. These interact with ROS that are gen-
erated by the Microsomal Ethanol Oxidizing System 
(MEOS) involving CYP2E1, inducible by alcohol 
consumption18,25,26. ROS, such as hydrogen perox-
ide, hydroxyethyl and hydroxyl radicals, superoxide 
anions25,26, are generated by ethanol metabolism via 
CYP2E118,25,26. Antioxidant defense systems, such as 
glutathione22, are depleted by alcohol consumption22,26, 
leading to ROS-mediated damage: inhibition of beta ox-
idation27 mitochondrial damage, leating to hepatocyte 
death26. The major ethanol metabolism pathways inter-
act in the pathophysiology of ALD when the excessive 
fatty acids and reactive aldehyde species, as mentioned 
above, react with ROS, forming lipid peroxides25,26, 
which consequently produce lipid peroxide-DNA and 
acetaldehyde-DNA adducts that are highly carcinogen-
ic, and promote inflammation and oxidative stress22. 
The reactive aldehyde species also react with lipid 
peroxides and produce acetaldehyde-lipid peroxide ad-

ducts that elicit immunogenic responses18,26. This leads 
to apoptosis and necrosis of hepatocytes20,29, which re-
leases danger-associated molecular patterns (DAMPs) 
that perpetuate hepatocyte injury30.
All of the mentioned contribute to the inflammatory 
process in ALD development and progression. How-
ever, there is widespread immune system dysfunction, 
such as a reduction in natural killer cell activity, defec-
tive Kupfer cells (KC) clearance, dendritic cell suppres-
sion and T-cell apoptosis25. Concomitantly, there is also 
neutrophil infiltration and pro-inflammatory cytokines 
and gene activation and upregulation25,31. This proba-
bly shifts to an aberrant immune response to pathogens 
such as danger-associated molecular patterns (DAMPs) 
and pathogen-associated molecular patterns (PAMPs). 
There is a subsequent activation of a pro-inflammatory 
cascade, marked by elevated IL-1ß, IL-18, IL-6, TNFα, 
caspase-1, and activation of inflammasomes and toll-
like receptors (TLRs)28, perpetuating hepatocyte death 
and DAMPs generation28.
One of the best-documented pathways of these inflam-
matory cascades involves lipopolysaccharide (LPS), 
the prototype for PAMPs. LPS is recognized by TLR4 
from KC and leads to upregulation of nuclear factor 
kappa B (NFƙB), mounting of an interferon response, 
and increased production of TNFα and ROS32. The ex-
cess fatty acids caused by chronic ethanol consumption 
increase the sensitivity of TLR4, which may amplify 
these inflammatory pathways32. Moreover, ethanol 
consumption, in particular, binge drinking, leads to in-
creased intestinal permeability27,28, which facilitates the 
translocation of pro-inflammatory agents. 
These pro-inflammatory mediators subsequently stim-
ulate hepatic stellate cell (HSC) activation and promote 
fibrogenesis that is characterized by excessive accumu-
lation of collagen and other extracellular matrix pro-
teins33. Activated HSCs, or myofibroblasts, are the ma-
jor source of the increased production of extracellular 
matrix proteins, along with portal fibroblasts and bone 
marrow-derived myofibroblasts. 
There are distinctive mechanisms playing a role in the 
development of alcohol-related liver fibrosis. Alcohol 
elevates LPS levels in the liver that directly and indi-
rectly activate HSCs via TLR434. LPS can also activate 
TLR4 signaling in hepatic sinusoidal endothelial cells, 
resulting in dysregulation of angiogenesis and subse-
quent promotion of fibrogenesis34,35. Furthermore, ac-
etaldehyde directly targets HSCs and upregulates the 
expression of collagens in these cells36. Alcohol also 
suppresses the antifibrotic effects of NK cells and IFN 
γ, thus promoting fibrosis37. All these processes lead to 
hepatocyte destruction and scarring of the parenchyma.
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Portal hypertension
Portal pressure is a result of blood flow and vascular re-
sistance31,38. Increases in one or both components lead 
to portal hypertension (PH), which is defined as portal 
pressure >5 mmHg31,38. Vascular resistance depends on 
blood viscosity, liver fibrosis, depletion of intrahepatic 
vasodilatory agents and microthrombi in portal sinu-
soids31,38. All of them are a byproduct of the widespread 
inflammatory process, ROS production, hepatocyte 
dysfunction, and fibrogenesis described above. This 
leads to increased vascular tone, starting in perivenular 
fibrosis in the central veins and progressing to destruc-
tion of the vascular architecture38.
In the context of liver cirrhosis, there is an initial ele-
vation in portal venous pressure attributed to height-
ened resistance in the hepatic circulation. This resis-
tance stems from both mechanical factors, involving 
the distortion of liver microvascular architecture, and 
dynamic factors, linked to endothelial dysfunction. 
Endothelial dysfunction results in a reduced presence 
of endogenous vasodilators, particularly nitric oxide 
(NO), and an augmented release of vasoconstrictors 
such as prostanoids, endothelins, and angiotensin, ulti-
mately leading to an increased hepatic vascular tone. In 
the subsequent stages, the escalation of portal pressure 
prompts the development of portosystemic collaterals. 
These collateral vessels arise from the dilation of exist-
ing vascular conduits due to increased portal pressure 
and angiogenesis mediated by vascular endothelial 
growth factor. The subsequent increase in blood flow 
due to splanchnic vasodilation31,38 is further augmented 
with translocation for intestinal bacteria and PAMPs31.
The ensuing systemic vasodilation results in effective 
hypovolemia, triggering expansion of plasma volume 
and an increase in cardiac output. This hyperkinetic 
circulation further amplifies blood flow to splanchnic 
organs, contributing to an additional elevation in portal 
pressure31,38.

Natural history of alcohol-related liver disease and 
management
Around 85-90% of heavy drinkers develop steatosis39, 
typically macrovesicular, and 33% of those will prog-
ress to steatohepatitis. Although both may progress to 
cirrhosis, the risk is twice higher with steatohepatitis40.
ALD, if not exacerbated by AH, follows a relatively 
stable clinical course until the development of decom-
pensated cirrhosis, which is characterized by the devel-
opment of ascites, hepatic encephalopathy, or variceal 
bleeding31,41. Treatment of these conditions is not the 
scope of this review, and there are specific guidelines 
for its management41,42. Alcohol abstinence is the cor-
nerstone of therapy. In patients with PH due to alcohol 

consumption, abstinence reduces portal pressure and 
decreases the risk of decompensation and mortality43,44.
PH is the lead driver of cirrhosis-related complications. 
Determination of portal pressure in a compensated cir-
rhosis phase through hepatic venous pressure gradient 
(HVPG) measurement, the gold standard, or by way of 
noninvasive tests, such as transient liver elastography 
and simple blood tests, helps to stratify patients at risk 
for decompensation and assess which have clinically 
significant PH45. Beta-blockers prevent decompensat-
ing events in patients with PH45.
In addition to PH-related complications, acute liver in-
jury, such as observed in AH, can present itself or prog-
ress to acute-on-chronic liver failure (ACLF), a syn-
drome of multi-organ failure superimposed on cirrhosis 
with mortality reaching 50%31,46.

Alcohol-related Hepatitis (AH)
AH is an exacerbation of ALD with a clear relationship 
with ethanol consumption30,47. Its severe forms may 
reach a mortality of 50% within 3 months6. Contrasting 
the chronic processes described, here, there is a shift to 
a more acute inflammatory response to PAMPs, leading 
to the infiltration of neutrophils and hepatocyte destruc-
tion throughout the liver30. A recent review looked at 
potential inflammatory markers that could be associ-
ated with increased inflammation in AH48,49, although 
not enough to create a unifying concept about triggers 
for the acute shift in the inflammatory response49. In a 
retrospective clinical study, the amount of alcohol intake 
was not able to differentiate between moderate AH and 
severe AH48. It can present in up to several weeks of eth-
anol abstinence50 with jaundice, abdominal pain, fever, 
weight loss and signs of hepatic failure, and diagnosis is 
firmly established with a biopsy6 that shows features of 
steatohepatitis, megamitochondriae, Mallory-Denk bod-
ies, neutrophil infiltration, and bilirubinostasis46,51. 
Treatment includes glucocorticoids depending on dis-
ease severity (MELD score) and may be an indication 
for early transplant referral2.

Hepatocellular carcinoma
HCC usually, but not always52, requires a cirrhotic 
liver to emerge. The pathways described above, such 
as DNA adduct formation, lipid peroxidation, acetal-
dehyde-lipid peroxide adducts, protein nitrification, 
HSC activation, ROS production, are highly carcino-
genic22,26,28,45. Acetaldehyde also inhibits DNA repair6. 
Genotoxicity, along with altered epigenetic expression, 
leads to chromosomal instability and oncogene expres-
sion6,13,18. Examples of these include NFkB induction of 
antiapoptotic genes28, loss of imprinting and downregu-
lation of cell differentiation genes28. HCC management 
is discussed in dedicated guidelines53,54.
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CENTRAL NERVOUS SYSTEM (CNS) DISEASE

About 50% of chronic alcohol users develop alcohol-re-
lated neurological diseases55. A recent study identified 
the presence of ALD in 37% of patients with Wernicke 
encephalopathy (WE)56. Similar mechanisms that occur 
in ALD are involved in the pathophysiology of neuro-
logical disease. Alcohol consumption affects, directly 
and indirectly, the neuroimmune system57,58-59. Wide-
spread inflammation happens in microglia, astrocytes 
and neurons58,59, with processes such as the production 
of ROS57-59, and the amplification of the inflammatory 
cascade through TLR receptors that are also expressed 
throughout the CNS60. Alcohol consumption also influ-
ences gene expression61, leading to the upregulation of 
pro-inflammatory genes such as NFƙB. Macroscopi-
cally and over time, neuroinflammation manifests itself 
as widespread cerebral atrophy57,59.
A particular example of alcohol-induced damage in the 
CNS is its effect on GABA levels. Synaptic dysfunc-
tion occurs due to increases in GABAergic activity57 
with consequent upregulation of NMDA receptors oc-
curs57. These processes, combined with thiamine defi-
ciency caused by malnutrition in patients with AUD, 
are the pathophysiological basis for cerebellar degen-
eration and alcohol withdrawal57.
Cerebellar degeneration is characterized by lower limb 
ataxia and dysarthria that tend to occur mainly with 
chronic consumption55,57; nevertheless, these symptoms 
have been described after binge drinking57. Advanced 
cases may also present with upper limb ataxia57. The 
clinical diagnosis may be aided with imaging showing 
vermian atrophy55,57.
Wernicke encephalopathy is dependent on thiamine de-
ficiency, which is common in AUD. It develops over 
days to weeks and presents ocular abnormalities (nys-
tagmus and/or ophthalmoplegia), mental status changes 
and ataxia. Neuroimaging shows changes in the thala-
mus, mammillary bodies, periaqueductal gray matter, 
oculomotor regions of the midbrain and the pons. Up to 
80% of WE progress to Korsakoff Syndrome55, which is 
characterized by confabulation due to retrograde and an-
terograde amnesia62. Treatment and prevention of these 
conditions is based on thiamine administration55,62,63.
Alcohol-related dementia is a manifestation of the 
continuous damage of chronic excessive alcohol con-
sumption (>36 g daily) through the pathophysiological 
mechanisms described above59. These may be aggra-
vated by thiamine deficiency, but may also occur in-
dependently55. The particular damage to the prefron-
tal cortex and limbic systems55,59, as well as the loss 
of cognitive flexibility59, lead to the manifestations of 
this type of dementia. Contrasting with other types, al-

cohol-related dementia has no specific clinical profile, 
and patients may partially recover with abstinence62.
Peripheral neuropathy is present in up to 90% of pa-
tients with AUD55 and is caused mainly by the direct 
toxic effects of ethanol on nerve cells62. It presents in a 
stocking glove distribution and may aggravate cerebel-
lar ataxia in late phases due to sensorimotor involve-
ment55,62.
Marchiava-Bignami Disease is a rare, demyelinating 
form of alcohol-related neurological disease55 with 
a characteristic degeneration of the corpus callosum 
shown on imaging64. It presents with a wide array of 
neurological symptoms that may involve higher cor-
tical functions64 and may easily be mistaken for de-
mentia. Thiamine deficiency may play a role in its 
pathophysiology. Treatment encompasses thiamine 
supplementation and ethanol abstinence64.
Although treatment remains largely abstinence and 
thiamine supplementation, the documentation of cu-
mulative doses might help distinguish and anticipate 
disease.

CARDIOVASCULAR DISEASE

There are two main considerations when analyzing 
the interaction between ethanol and the cardiovascular 
system: alcohol-induced cardiomyopathy and arrhyth-
mias65,66,67.
Concerning cardiomyopathy, the heart is the second 
most common organ to be affected by ethanol toxicity 
after the liver65, with a prevalence estimated between 
20-30% in AUD patients65,67. Ethanol directly causes 
ion channel dysfunction, sarcomeric disruption, NFƙB 
upregulation, decrease of cardiomyocyte regeneration 
and protein synthesis65,68. Acetaldehyde induced pro-
tein-adducts create additional immunological heart 
damage65, contributing to interstitial fibrosis69.
The dose thought to cause ACM ranges between 60-90 
g/day for 5-10 years66, presenting with a classical heart 
failure syndrome with pulmonary and peripheral con-
gestion67. This amount of excessive alcohol consump-
tion, together with left ventricular dilation and reduced 
ejection fraction, is readily diagnosed using a transtho-
racic echocardiogram after exclusion of other causes70,71. 
The treatment is similar to other dilated cardiomyopa-
thies, involving standard heart failure therapy and man-
agement of congestion with diuretics67. Abstinence from 
ethanol allows for recovery in most cases65.
Heavy drinking is associated with an increased risk of 
developing atrial fibrillation (AF) in a dose-dependent 
manner, increasing up to 8% with each excessive dai-
ly drink68,72, and with binge drinking episodes67,68. In the 
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latter, AF presents circa 12-36 hours after alcohol intoxi-
cation68,73. Abstinence might reduce AF recurrence73.
The shortening of the effective refractory period, slow-
ing of intra-atrial conduction, and induction of atrial 
fibrosis have also been documented67,68.
Supraventricular and ventricular arrhythmias are also 
associated with alcohol binge drinking, albeit less fre-
quently68,73,74.

PANCREATIC, ENDOCRINOLOGIC AND MET-
ABOLIC DISEASE

Between 30-50% of cases of acute pancreatitis (AP) 
are alcohol-related75,76, representing the main cause of 
chronic pancreatitis76,77. Ethanol leads to the prema-
ture activation of zymogens in pancreatic acinar cells, 
thereby initiating the inflammatory process78. AP sever-
ity increases when alcohol-related AP is combined with 
other aetiologies such as hyperlipidemia79. Its presen-
tation does not differ from the others with the classical 
belt-like abdominal pain, nausea, vomiting and elevat-
ed serum amylase and lipase76. 
A daily intake of 60-80 g is a clear threshold for the de-
velopment of chronic pancreatitis67,77, and can coexist 
with ALD80,81. It is a disease that affects mainly men, but 
prevalence among women has increased over time77,82.
Its pathophysiology is complex, involving recurrent 
cycles of pancreatitis flares-regeneration (necrosis-fi-
brosis process), promoting scar tissue formation, pan-
creatic parenchyma destruction and ductular distortion 
and direct toxic effect on acinar, ductular and stellate 
cells77,83. Genetic polymorphisms in transport channels 
also play a role in chronic pancreatitis progression77,81-83.
Chronic pancreatitis presents with recurrent pain in 
a patient with a history of pancreatitis, followed by 
steatorrhea and diabetes mellitus (DM)76,77,82. The di-
agnosis consists of a typical clinical history and im-
aging (CT/MR) findings of pancreatic calcifications or 
characteristic pancreatic ductal changes. Medical treat-
ment is centered on alcohol discontinuation, analgesic 
agents, pancreatic enzymes and antioxidants82.
DM follows the same relationship as cardiovascular 
disease. Widespread data shows that light to moderate 
alcohol intake does reduce DM incidence, while higher 
amounts may increase it84-88. To further strengthen this 
evidence, moderate alcohol intake is also associated with 
increased insulin sensitivity in non-diabetic patients89,90.
A recent meta-analysis of prospective cohort studies85 
found that alcohol intake >57 g/d was associated with 
an increased risk of DM in men, a number similar to the 
one associated with the development of CP. Sex dis-
crepancy might be associated with the transporter mu-

tations described previously, which are more prevalent 
in men82,85.

MALNUTRITION AND OBESITY

Alcoholic beverages are rich in calories, and ethanol 
is the second most caloric dense energy source that 
humans consume91. Similar to the argument of sweet-
ened beverages, calories coming from alcoholic bever-
ages can significantly increase daily energy intake and 
thus contribute to the development of obesity. Alcohol 
stimulates food intake by inhibiting leptin and gluca-
gon-like peptide 192 and its metabolization to acetal-
dehyde and acetate facilitates readily available energy 
substrates, inhibiting fat mobilization93. 
There is low-quality data associating weight loss with 
abstinence from previous moderate drinkers and weight 
gain from stable heavy drinkers at 5 years94,95. The latter 
association is counterintuitive since heavy drinking is 
often associated with malnutrition. However, five years 
may not suffice to observe alcohol-induced malnutri-
tion. Other cross-sectional data associates heavy drink-
ing habits with obesity92, but it remains challenging to 
correlate this single variable (alcohol intake) with so 
many others that account for weight gain. Observation-
al longitudinal evidence is conflicting92,96. There is some 
(short-term) experimental evidence that suggests no rela-
tionship: the addition of 270 mL of red wine for 6 weeks 
resulted in no change in weight in a group of men92,95.
Alcohol consumption and obesity act synergistically, 
accelerating the progression of chronic liver disease97. 
Obesity, along with other components of metabolic 
syndrome, exerts a major role in the development of 
MASLD97. Excessive caloric intake and alcohol98 both 
lead to lipolysis in the adipose tissue and consequent-
ly increased fat deposition in the liver parenchyma, 
potentiated by insulin resistance97. The hepatic paren-
chymal damage happens through immunologically 
mediated pathways similar to ALD, such as organelle 
dysfunction and oxidative stress99. For instance, diabe-
tes and obesity induce CYP2E1, thereby amplifying al-
cohol-mediated damage98. Gut microbiome in MASLD 
leads to ethanol synthesis, increasing intestinal perme-
ability and PAMPs translocation99.
A particularly harmful combination is obesity and binge 
drinking100. A high-fat diet and binge ethanol consumption 
simulate the same inflammatory profile as in alcohol-re-
lated hepatitis100 in mice. Both MASLD and ALD share 
the same genetic background, such as the aforementioned 
PNPLA3, TM6SF2 and MBOAT7, as well as other com-
mon genes are involved in MASLD progression98,99.
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In epidemiological studies, it is evident that cirrhosis, 
liver cancer and liver-related death are more prevalent 
in patients with an excessive alcohol consumption with 
concomitant metabolic syndrome or risk factors101.
Another robust association is the one between ALD 
and malnutrition. It is associated with a higher rate of 
decompensation of cirrhosis102-104. Data for AUD is not 
as extensive. Although alcoholic beverages are rich in 
calories and their consumption inhibits leptin, in a dis-
ease state such as ALD decreased food intake, malab-
sorption and a hypermetabolic state are common102,104.
Appetite is reduced due to early satiety, also influenced 
by ascites, persistent elevated levels of TNF-alpha and 
dysgeusia caused by zinc deficiency102. Less palatable 
food because of salt restriction might also play a role in 
malnutrition in cirrhotic patients104.
Cirrhosis induces a hypermetabolic state, document-
ed by calorimetry104, through several processes. These 
include: saturation of the MEOS system that utilizes 
significantly more ATP, low-grade endotoxemia that 
induces a state of persistent low-grade inflammation, 
thermal loss with ascites and altered macro- and mi-
cronutrient balance culminating in a negative nitrogen 
balance, gluconeogenesis through proteolysis, progres-
sion of steatosis and multiple vitamin and ionic defi-
ciencies102,104.
Portosystemic shunts might aggravate malnutrition by 
bypassing the first pass of many nutrients and toxic 
substances through the liver104.
The prevalence of malnutrition in patients with cirrho-
sis lies between 20-60%103,104, and nearly every patient 
with AH presents with malnutrition2,93,105.
Adequate and long-term supplementation are measures 
that need to be taken as soon as cirrhosis is diagnosed. 
This evidence is further corroborated by associated sar-
copenia and osteoporosis, as described below.

BONE AND MUSCLE DISEASE

Alcohol has a myriad of direct and indirect effects on 
bone metabolism. In in vitro studies, excessive consump-
tion shows altered levels of osteoprotegerin, insulin-like 
growth factor 1, receptor activator of nuclear factor-κB 
(NF-κB; RANK), and its ligand (RANKL), decrease in 
osteogenesis, increase in adipogenesis and activation 
of senescence pathways in osteoblast transformation of 
mesenchymal stem cells into adipocytes106,107.
Indirect effects account for lifestyle habits related to 
AUD, such as malnutrition leading to ion deficiencies, 
as well as reduced sunlight exposure contributing to 
decreased levels of vitamin D94,106,107. Besides osteopo-
rosis, excessive alcohol intake is associated with fre-
quent falls, accidents and fractures94.

Despite this evidence, prospective observational stud-
ies show a J-curve relationship between ethanol intake 
and development of osteoporosis. Alcohol consump-
tion is positively correlated with increased bone min-
eral density (BMD) in postmenopausal women in up to 
29 g/d and in men in up to 55 g/d106,107. However, ex-
cessive intake, such as 4 daily drinks, is associated with 
lower BMD, cortical thickness and osteopenia106,107. 
Moreover, abstinence for as little as 90 days is linked 
to an increase in femoral BMD106.
Although sarcopenia is commonly found in patients 
with AUD, particularly if associated with cirrhosis, the 
direct effect of heavy alcohol consumption on muscle 
has not been widely explored.
In vitro, ethanol impairs skeletal muscle protein syn-
thesis108; however, meta-analyses fail to establish that 
relationship, also, in part, because of different meth-
odological aspects, such as diverse cutoffs to define 
sarcopenia108,109. A recent cross-sectional study found 
an association between moderate alcohol consumption 
and lower muscle mass in men but did not manage to 
establish an association with sarcopenia110. Sarcopenia 
occurs in up to 70% of patients with cirrhosis111, and 
because of the hypermetabolic mechanisms described 
above, sarcopenia propagates and perpetuates a cachex-
ia111,112. The impact of sarcopenia in cirrhosis is signif-
icant to the point that a MELD-Sarcopenia score has 
been developed and showed an improved prediction of 
mortality in patients with lower MELD scores113.

INFECTIOUS DISEASE

AUD patients have an increased risk of infection and 
sepsis114-116. This is due to widespread immune dys-
function/paresis, intestinal dysbiosis, increased risk 
of aspiration and defective mucociliary function114. 
The best available literature concerns pneumonia and 
respiratory sepsis. Ethanol use is associated with an 
increased risk of community-acquired pneumonia, as 
well as more virulent microorganisms, parapneumonic 
effusion and empyema116.

HAEMATOLOGICAL DISEASE 

Alcohol causes hematopoiesis dysfunction in the three 
blood cell lineages117. Acetaldehyde adducts interfere 
with cell replication117. Excessive consumption may 
culminate in one or more cytopenias or pancytope-
nia, which may also be associated with malnutrition 
states118 and hypersplenism119. The factors predicting 
which and how many cell lineages affected are not 
clearly described.
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Leukopenia is mainly expressed through neutropenia. 
Excessive ethanol intake, mainly in a pattern of chron-
ic consumption plus binge, leads to the depletion of 
granulocyte precursors by mobilization to the periph-
eral circulation, while inhibiting their differentiation120. 
Furthermore, neutrophils are dysfunctional with chron-
ic excessive alcohol consumption. Thereby, granulo-
cyte-colony stimulating factor has been proposed as a 
potential therapy in severe infections frequently detect-
ed in AUD or AH patients120.
Anaemia can occur by various mechanisms that may 
coexist in AUD. Although alcohol consumption down-
regulates hepcidin, leading to potential iron overload, 
anaemia is frequent in ALD121.
Ethanol damages erythroid precursors and leads to sid-
eroblastic anaemia. In patients with AUD, nutritional 
deficiencies (B complex vitamins, folate and iron), gas-
trointestinal blood loss and forms of hemolytic anaemia 
can also be found121,117. The latter, spur cell anaemia, 
usually occurs in cirrhosis due to impaired cholesterol 
metabolism121, with hemolysis happening because of a 
fragile membrane once erythrocytes meet splenic mac-
rophages. A particular form of hemolytic anaemia in 
ALD is Zieve’s Syndrome, consisting of a triad of jaun-
dice, hyperlipidaemia and hemolytic anemia122, which 
might correlate temporarily with AP123 or AH124.
Finally, alcohol interferes in platelet function and pro-
duction, leading to thrombocytopenia125. Ethanol direct-
ly impairs megakaryocyte maturation117 and decreases in 
platelet count are observed circa 4 h after ethanol solu-
tion infusions125. Furthermore, ALD may lead to lower 
levels of thrombopoietin125. Data regarding the preva-
lence of ethanol-induced thrombocytopenia is scarce; 
however, it is estimated to be frequent and is detected in 
up to 25% of hospitalized AUD patients125.

CONCLUSIONS

Abstinence is the most effective way to stop and reverse 
alcohol-induced organ damage. Urgent strategies to 
decrease societal stigma and governmental approaches 
such as taxation and better labelling of alcohol content 
are required. International academic societies in alco-
hol research should aim to reach a consensus regard-
ing a standardized measure of alcohol consumption to 
improve and homogenize research. Healthcare services 
and professionals must improve pathways of referral to 
addiction care and specialized therapy.
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